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Liquid-metal flow in a rectangular duct with a 
strong non-uniform magnetic field 
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(Received 1 February 1983 and in revised form 4 October 1983) 

Liquid-metal flows in rectangular ducts having electrically insulating tops and 
bottoms and perfectly conducting sides and in the presence of strong, polar, 
transverse magnetic fields are examined. Solutions are presented for the boundary 
layers adjacent to the sides that are parallel to the magnetic field. Overshoots in the 
radial velocity profiles show that the side layers have zero displacement thickness 
and do not perturb the inviscid core. Very weak secondary flows involve four 
significant vortices, as reflected in the polar velocity profiles. 

1. Introduction 
Fully developed MHD duct flows and three-dimensional MHD flows in variable-area 

ducts with strong uniform magnetic fields have received considerable attention 
(reviewed respectively by Hunt & Shercliff (1971) and by Walker & Ludford (1975)), 
but three-dimensional MHD duct flows in strong non-uniform magnetic fields are less 
well understood. For large, direct-current, electromagnetic feed pumps in liquid-metal 
fast-breeder reactors and for liquid-lithium blankets in magnetic-confinement fusion 
reactors, the flows in regions of strong non-uniform magnetic fields are major 
contributors to the pressure drops and energy losses. 

MHD flows in circular ducts with strong non-uniform magnetic fields have been 
studied analytically by Holroyd & Walker (1978) and experimentally by Holroyd 
(1979,1980 b) .  Inviscid flows in rectangular ducts having insulating tops and bottoms 
and highly conducting sides and in the presence of planar non-uniform magnetic fields 
which are parallel to the sides have been studied analytically and experimentally by 
Holroyd ( 1 9 8 0 ~ ) .  Here we extend Holroyd’s analysis to include viscous effects in the 
boundary layers, while restricting the geometry and magnetic field in order to make 
the side-layer boundary-value problems tractable. 

The Hartmann layers adjacent to the top and bottom have a well-known, local 
exponential structure, but the side-layer solutions for various cases are much more 
difficult than the corresponding solutions with uniform magnetic fields. Ludford & 
Walker (1980) formulate these side-layer governing equations for non-uniform, planar 
magnetic fields for various wall conductivities, but they do not present any solutions. 
They point out that these equations can be solved locally only for perfectly 
conducting sides and that the coefficients in the governing partial differential 
equations are constants only for polar magnetic fields. Therefore the present study 
treats the simplest possible non-uniform magnetic field, side-layer problem. 

The results apply to the flows near the ends of the electrodes and magnet pole faces 
of the LMFBR feed pump, but do not apply to the flows beyond the electrode ends 

t Present address: Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830. 



310 J. C .  Petrykowski and J. S. Walker 

or to fusion blanket flows, since these cases involve thin metal sides rather than 
perfectly conducting sides. However, insights from the present simplest possible case 
and empirically derived simplifications (Holroyd 1980a) can be used in the future to 
make the more difficult side-layer problems for thin conducting or insulating sides 
and for non-polar magnetic fields tractable. 

2. Problem formulation and core solution 

incompressible fluid in the presence of a steady magnetic field are 
The dimensionless equations governing the steady flow of an  electrically conducting, 

N-l(u-V)u = -Vp+jx  B+M-2V2u,  ( l a )  

j = - V $ + u x  B, V * j  = 0, ( l b ,  c) 

V.u=O,  V . B = O ,  V x B = R , j ,  ( I d ,  e , n  

where u,  p ,  j ,  B and $ are the velocity, pressure, electric current density, magnetic 
field and electric potential function, which are normalized using V,, cr V, Bt I,, 
cr V, B,, B, and V, B, L respectively (Walker 1980). The dimensionless parameters 

are the interaction parameter. Hartmann number and magnetic Reynolds number; L ,  
V, and B, are the characteristic length, velocity and magnetic field strength for a 
particular flow situation; and IT, p,  9 and p are the fluid's electrical conductivity, 
density, dynamic viscosity and magnetic permeability, which are assumed to be 
constant. 

We assume (i) that  R,  4 1, so that B in (1  a ,  b )  is a known vector field given by 
solving the decoupled equations (1 e , n  with zero on the right-hand side of (ln, and 
(ii) that N $ M $ 1, so that the inertial term on the left-hand side of (1 a )  is negligible 
everywhere (Walker, Ludford & Hunt 1971), and so that viscous effects are confined 
to boundary and free shear layers. The dimensionless polar magnetic field has the 
components 

where ( r , B , z )  are cylindrical coordinates, and B, is chosen as the magnetic field 
strength at a distance L from the z-axis. The duct has straight, diverging, electrically 
insulating top and bottom, which are perpendicular to  the magnetic field a t  B = +do 
and parallel, perfectly conducting sides which are parallel to the magnetic field a t  
z = k 1, where L is chosen as half the distance between the sides (see figure 1). 

In  addition to  satisfying a modified form of (1 a d )  with the left-hand side of (1 a)  
replaced by zero, with the components of Bgiven by ( 2 )  and with M % 1 ,  the variables 
v ,  p ,  j and $ must satisfy the boundary conditions 

B,. = B, = 0, B, = r-l ,  (2) 

v = 0, j, = 0 a t  B = f B o ,  

u = O ,  $ =  k$, at z =  +1. 

The boundary condition (3 b) assumes that ct, ,, 4 M-l, while the boundary condition 
( 4 b )  assumes that c, % Mt, where ci = cri t i /uL is the wall conductance ratio for the 
wall with electrical conductivity cri and thickness t i ,  and i = t ,  b and s for the top, 
bottom and sides respectively (Walker 1981). 
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Line current Line current 

FIQURE 1. The duct with the cylindrical coordinates, the components of velocity, and an infinite 
line current along the z-axis which would produce the present polar magnetic field. 

3 

4 
FIGURE 2. One quarter (0 f 0 < B0, - 1 f z < 0) of an r = constant cross-section of the duct 

showing the Subregions of the flow for M 9 1. 

The average velocity a t  a distance L from the z-axis is chosen as V,, so that the 
dimensionless radial velocity must satisfy a volume-flux condition 

The modified equations (1 u-d) and the boundary conditions (3,4) represent a linear 
boundary-value problem whose homogeneous solution is normalized by the volume- 
flux condition ( 5 ) .  

The interior of the duct can be divided into subregions, and certain terms in the 
modified equations ( l a - d )  can be neglected in each subregion. The subregions 
(shown in figure 2) are (c) the inviscid core, (h) the Hartmann layers with O(M-l) 
thickness, (5) the side layers with O(M-4) thickness, (i) the intersection regions with 
O(M-l) x O(M-4) dimensions, and (cr) the corner regions with O(M-l)  x O ( M - l )  
dimensions. The corner regions are needed to represent singularities properly in the 
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side-layer solution a t  the corners, but we can obtain the first term in each asymptotic 
expansion for the variables in the other subregions without considering the corner 
regions in detail. 

All derivatives are 0 ( 1 )  in the core, so that the core variables satisfy the modified 
equations ( l a d )  neglecting the last, 0 ( M W 2 ) ,  viscous term in ( l a ) .  The Hartmann 
layers have a well-known exponential structure which depends only on the local, 
tangential core velocity. The Hartmann-layer variables satisfy the boundary condi- 
tions (3) and match the core variables, provided the latter satisfy the Hartmann 
conditions 

neglecting O(M-l )  terms (Walker, Ludford & Hunt 1972). I n  the side layers v, and 
v0 are O ( l ) ,  and the jumps in v, and 9 across the side layers are a t  most O(M-4). 
Therefore the boundary conditions (4) indicate that the core variables satisfy the 
conditions 

neglecting O( M-4) terms. The core variables which satisfy the inviscid governing 
equations, the boundary conditions (6, 7 )  and the volume-flux condition ( 5 )  are 

V ,  = j, = 0 at e = ke,, (6) 

v ,=O,  $ =  at z =  f l ,  (7) 

i 
v, = r-l ,  v0 = v, = j r  = j ,  = 0, j ,  = r-2-$o, 

1 
2r $ = $02,  p = $0 1n r+, ,  

where O(M-i') terms are neglected, and inessential additive constants in the pressure 
and electric potential have been set equal to zero. The solution (8) can be obtained 
by substituting the present magnetic field (2) into the general inviscid solution 
presented by Holroyd ( 1980 a). 

I n  the analysis of the side layers we will need some of the O(M-i) and O(M-') core 
perturbation variables, while these variables satisfy the same inviscid version of the 
modified equations (1 a-d),  which neglects O(M-2)  terms. I n  addition, the O(M-?) core 
perturbation variables also satisfy the Hartmann conditions (6), which neglect 
O(M-') terms. With these requirements, the O(M-l)  core perturbation pressure is a 
function of r and z only, while the O(M-4) core perturbation pressure h is a function 
of r only, and the O(M-i) core perturbation electric potential function is given by 

z 
- (r3h')', 
2r (9) 

where the primes denote differentiation with respect to r ,  and another inessential, 
additive, constant voltage has been discarded. 

If the perfectly conducting sides are connected to  an external d.c. voltage source, 
then equals half the dimensionless voltage difference. On the other hand, if the 
sides from an entrance a t  r = rl to an exit at r = r2 are connected to an external 
resistor, then 

where R is the dimensionless external resistance normalized with respect to l /aL. 
The value of do increases from zero for a short circuit (R = 0) to a maximum for an 
open circuit (R = 00).  For an open circuit there is no net 0 ( 1 )  transverse electric 
current, but the O(1) transverse electric current density j ,  is positive from r = rl to 
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and is negative from this radius to r = r2.  Correspondingly the pressure decreases from 
ihs value a t  the entrance to a minimum a t  this radius, and then increases to an exit 
pressure which is less than the entrance pressure. The pressure measurements 
presented by Holroyd (19804 are qualitatively similar. 

The core solution (8) and the side-layer solution to be presented in $ 3  are 
independent of any boundary conditions a t  r = rl, r2 .  In  other words, the solutions 
in the present finite-length duct are the same regardless of the flows upstream and 
downstream of its entrance and exit, respectively. If the upstream and downstream 
flows do not exactly match the core and side-layer solutions, then free shear layers 
of O ( M 3 )  thickness a t  r = rl, r2 provide whatever adjustments are necessary (Ludford 
& Walker 1976). 

3. Side-layer solution 

The substitutions 
The flow is symmetric in z, so that we need only consider the side layer a t  z = - 1 .  

vz = [ s ( ~ )  r (r3h’)’ ‘ +:]/Mi,  

p = Qo In (10i) 

stretch the coordinate normal to the side and introduce resealed side-layer variables, 
which are denoted by capital letters and which are functions of the side-layer 
coordinates ( r , O , Z ) .  Here h is the O(M-2) core perturbation pressure, which is a 
function of r only, and g is the O(H-l) core perturbation pressure evaluated a t  z = - 1, 
so that g is also a function of r only, while primes denote differentiation with respect 
to r .  The additive terms in the substitutions (lOd,g--i) come from the matching 
between the side-layer and core solutions, so that all side-layer variables except V,  
vanish as Z-too, while V,+ 1 .  The powers of r resealing each side-layer variable are 
chosen because these particular resealed variables turn out to be independent of r .  
The variables (10b-i) now represent the leading terms in the asymptotic expansions 
for the side-layer variables, so that the expressions (10 b, c )  neglect O(M-d) terms, the 
expressions (lOd-f, h)  neglect O(M-l)  terms, and the expressions ( log,  i )  neglect 
O(M-8) terms. 

With the substitutions (2), (10) and with some algebraic manipulations, the leading 
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terms in the inertialess version of the governing equations (la-d) provide three 
equations, 

governing the three basic side-layer variables @, V, and P, and also provide 
expressions for the other side-layer variables in terms of these three basic ones, 

where 
ap ap 
aZ ar 

S(P) = P + Z - - r -  (13) 

The terms on the right-hand sides of the equations (1  1 a ,  b) represent the effects of 
this non-uniform magnetic field on the side layers. If the right-hand sides of (1  1 a ,  b) 
were replaced by zeros, the equations (1  1 )  would become the three basic side-layer 
equations for a variable-area duct with a uniform, transverse magnetic field (Walker, 
Ludford & Hunt 1971). For a uniform magnetic field, the equation ( l la )  governing 
@ is decoupled from the equations (1 16 ,  c) governing P and V,, the component of 
velocity parallel to  the magnetic field ; the boundary-value problems are only coupled 
through the the Hartman conditions a t  the top and bottom. For a non-uniform 
magnetic field, the three basic side-layer variables are intrinsically coupled because 
of the right-hand sides of the equations (1  1 a, b) .  

With the substitution of the expressions (lOa-d,h, 1 2 a , b ,  13), the boundary 
conditions (4) become 

Walker et al. (1972) treat the Hartmann layers and intersection regions on general 
insulators with uniform magnetic fields, while Holroyd & Walker (1978) extend this 
treatment to  non-uniform magnetic fields. The intersection-region variables satisfy 
the boundary conditions (3) and match the side-layer variables (lo), provided the 
latter satisfy the Hartmann conditions 
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which neglect O(M-2) and O(M-') terms respectively. Substituting the expressions 
(12a, d) ,  the boundary conditions (156) become 

a@ a w  
-= f- a t  0 = +8,. ae az2 

The matching between the core and side-layer solutions yields the conditions 

@ + O ,  V,+O, P-tO as Z+m. (17a, b,  c )  

The O ( M 3 )  core perturbation solution is determined by the structure of the side 
layer, which satisfies the boundary conditions (4) and matches the O(1) core solution 
(8). If we integrate ( l i b )  from 0 = -0, to 0 = 0, and from 2 = 0 to Z = 00,  and if 
we introduce the boundary conditions (14b,d, 15a, 17a,c), then we obtain the 
restriction 

(r3h')' = 0, 

so that h' = C/r3 ,  where C is a constant of integration. The boundary condition (14d) 
is now replaced by @ = O  at Z = O .  

The equation (12a) and the boundary conditions (17a, 18) show that the side layers 
have no O ( M 3 )  volume-flux deficiency. Since the Hartmann-layer volume-flux 
deficiency is O ( M - l ) ,  the O(M-i) core perturbation radial velocity, which is equal to 
- C / r ,  must satisfy the volume-flux condition (5) with the 48, on the right-hand side 
replaced by zero. Therefore C = 0, and all O(M-i) core perturbation variables are zero, 
so that the core solution ( 8 )  actually neglects O(M-') terms. 

The boundary-value problem (11,14a-c, 15a, 16,17,18) is completely independent 
of r ,  so that the solutions @, V, and P are functions of 8 and 2 only. The last term 
in the expression (13) is zero, and all the rescaled side-layer variables denoted by 
capital letters are functions of 8 and Z only. Indeed, the side-layer variables represent 
a one-parameter family of universal profile functions of 8 and Z ,  which depend only 
on the parameter 0,. 

The method used to solve the boundary-value problem (11,  14a-c, 15a, 16, 17,  18) 
represents an extension of the solution technique for the side layers in similar 
rectangular ducts with uniform, transverse magnetic fields (Walker et al. 1971). Here 
we will summarize the method, with emphasis on the new elements required for the 
non-uniform magnetic field side-layer problem. A Fourier sine transform with respect 
to 2 is introduced for @, while Fourier cosine transforms are introduced for P and 
V,. These transforms reduce the equations (1  1 )  to one second-order and two first-order 
ordinary differential equations with 8 as the independent variable. This particular 
combination of Fourier sine and cosine transforms incorporates the boundary 
conditions (14b, 17,18) into the ordinary differential equations, ignores the boundary 
conditions (14a, c), and introduces an inhomogeneous term involving an unknown 
function of 8 into the transforms of each of the equations (1 1 a ,  c ) .  The two unknown 
functions 

(18) 

are the rescaled dimensionless shear stresses T,, and T~~ a t  the side. The solution of 
the three ordinary differential equations must satisfy the cosine and sine transforms 
of the boundary conditions (15a, 16) respectively a t  6 = 

The solutions for the transforms of @, P and V, can be found in terms of F and 
G using either the method of variation of parameters or a Green-function approach, 

6,. 

F L M  139 11 
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and solutions were found by both methods as a check on the lengthy algebraic steps 
involved. For a uniform magnetic field, the equation governing 0 is decoupled from 
the equations governing P and V,, so that the Green-function solutions can be 
generated separately ; the coupling through the Hartmann conditions can be taken 
care of by the homogeneous solutions. For this non-uniform magnetic field, the three 
ordinary differential equations are intrinsically coupled through the transforms of the 
right-hand sides of (1  1 a ,  b ) ,  so that the Green-function and variation of parameter 
methods are being applied to a single fourth-order problem, rather than to two 
decoupled second-order problems. 

Analytic Fourier inversions are not possible, so that the solution for 0 and the 
solutions for P and V, are given by quadrature representations of these inversion 
integrals involving the sine and cosine respectively of Z times the Fourier transform 
variable A,  with integration from h = 0 to  h = 00. After interchanging the order of 
integration, the solution for each of the variables @, P and V, is given by the sum 
of two integrals with respect to an integration variable 8*. The integrand of each 
integral consists of either F(8*) or G(B*) times a kernel which is a function of 8, 8* 
and 2, and which is given by a semi-infinite integral with respect to  A. 

When we introduce the solutions for 0 and V, into the previously ignored boundary 
conditions (14a,c), we obtain a pair of coupled integral equations governing the 
unknown wall shear stresses F and G. The integral equation generated by the 
condition (14a) involves an inhomogeneous term equal to - 1 ,  while the other integral 
equation is homogeneous. Each integral equation holds for -8, < 8 < 8, and 
involves an integral from 8* = -8, to 8* = O0 for each of the unknown functions. For 
each of the four integrals, F(8*) or G(8*) is multiplied by a kernal which is now a 
function of 8 and 8* only, and which is given by a semi-infinite integral with respect 
to A. 

For the corresponding uniform magnetic field side-layer problem, pairs of kernels 
are the same, so that the two integral equations can be simply summed to obtain 
one integral equation with one kernel and one unknown function, which is the sum 
of F and G. Once the single unknown function is found, it is easily split into F and 
G because F and G are even and odd functions respectively (Walker et al. 1971). The 
coupling due to this non-uniform magnetic field eliminates this equality between 
kernels, so that we must deal with two integral equations, instead of one, and with 
four kernels instead of one. I n  addition, the kernels here involve extremely long and 
complex algebraic expressions. Each of the kernels for the uniform field problem can 
be presented in one line, while each of the present kernels requires three pages for 
presentation. Therefore the four kernels in the integral equations and the six kernels 
in the expressions for the basic side-layer variables are not presented here, but are 
presented by Petrykowski (1981). 

The solution of the two coupled integral equations gives F and G. Then the solutions 
for @, P and V, are obtained by introducing the solutions for F and G into the 
expressions obtained by the Fourier inversion of the Green-function solutions. The 
solutions for the other side-layer variables are obtained by introducing the solutions 
for the three basic variables into the expressions (12). Numerical analysis is required 
for all of these steps. 

Thirty-two-point Gauss-Legendre, Gauss-Hermite and Gauss-Chebyshev quadra- 
tures are used to solve the integral equations for F and G. The four integrals with 
respect to 8* are approximated by the Gauss-Chebyshev quadrature because the 
kernels have square-root singularities a t  8 = 8" = f8,. Walker et al. (1971) used a 
Gauss-Legendre quadrature for similar integrals, but they had to  rescale the variable 
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of integration because of the corresponding square-root singularities. Since a Gauss 
quadrature based on Chebyshev polynomials of the first kind automatically provides 
the concentration of abscissas near the end points which is appropriate for square-root 
singularities, the Gauss-Chebyshev quadrature requires no rescaling and involves a 
smaller, bounded remainder, so the use of this quadrature represents an improvement 
over the previous numerical analysis. 

The kernels behave like (8 - 8*ld near 8* = 8, and two steps are needed to represent 
this singularity properly in the numerical approximation. First, integrals with F(O*) 
and G(8*) replaced by F(8)  and G(8) are added to and subtracted from the 
corresponding integrals in the integral equations. For the added integrals, the F or 
G is taken out of each integral, so that the remaining integrand is known and 
analytically integrable. After integration, the only singularities are at 8 = B0 and 
present no problems. The subtracted integrals are incorporated into the original 
integrals, so that the combined integrands are zero a t  19 = 8* because the square-root 
singularity is multiplied by F(8*)  - F(8)  or G(8*) - G(8). While this first step removes 
the singularity at  8 = 8*, the contribution of the diagnonal 8 = 8* is still very 
important in the integral equations. The second step is to evaluate both integral 
equations a t  values of 8 which are equal to the 32 Gauss-Chebyshev abscissas. Use 
of the same discrete values for B and 8* properly represents the contribution of the 
diagonal, once the singularity here has been removed. 

These steps reduce the pair of coupled integral equations to a matrix equation 
corresponding to 64 simultaneous, linear, algebraic equations. A 64 x 64 square 
matrix multiplies a 64 x 1 column matrix composed of the 32 unknown values of F 
a t  the Gauss-Chebyshev abscissa values and the 32 unknown values of G a t  the same 
abscissa values. The product of these matrices equals a known, 64 x 1 column matrix 
with 32 values of - 1 and 32 values of 0. The 4096 values in the square matrix are 
the values of the four kernels in the integral equations evaluated a t  various values 
of 8 and 8*, and multiplied by the Gauss-Chebyshev weight factors. For the 
numerical evaluation of the semi-infinite integrals with respect to h which define the 
four kernels, the 16 positive abscissas for the 32-point Gauss-Legendre quadrature 
are used for the part of each integral from A = 0 to some fixed value of A ,  and the 
16 positive abscissas for the 32-point Gauss-Hermite quadrature are used for the part 
of each integral from this fixed value to A = 00. For the uniform magnetic field 
side-layer problem, Walker et al. (197 1 )  split each of the integrands in their semi-infinite 
Fourier inversion integrals into two integrands: one integrand that could be inte- 
grated analytically with respect to A and one integrand that behaved like exp ( -2h2) 
as h -+ 00. With this splitting, the semi-infinite integrals requiring numerical 
evaluation had the exponential behaviour appropriate for a Gauss-Hermite quadra- 
ture. For the present non-uniform magnetic field side-layer problem, the integrals for 
the kernels are vastly more complicated than those for the uniform-field problem, 
and no splitting of the present integrals yields either analytically integrable parts or 
uniformly exponential behaviour. Instead, h in each semi-infinite integral must be 
rescaled by one of three functions of 8 and 8* in order to ensure the proper exponential 
behaviour of the integrand as the rescaled A approaches infinity. Various fixed values 
of h separating the integration ranges for the Gauss-Legendre and Gauss-Hermite 
quadratures were used in order to check the accuracy of the numerical approximations 
for the kernels. 

After the 4096 values in the square matrix are obtained from the Gauss-Legendre 
and Gauss-Hermite approximations for the semi-infinite Fourier-inversion integrals, 
the values of F and G a t  the 32 Gauss-Chebyshev abscissas are found by Gauss 

11-2 
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v, B o =  0.7854 
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0.8 .- 
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1-0.02 

FIGURE 3. Profiles of the rescaled side-layer radial velocity V,  and polar velocity V,. Solid lines denote 
V,  in the midplane (0 = 0) for 8, = 0.4636, 0.7854 and 1.1071 radians (tan8, = 0.5, 1.0 and 2.0 
respectively). Dashed lines denotes V,  at other values of 0 for 0, = 1.1071 rad. Doedashed lines 
denote V, for 8, = 1.1071 rad. 

elimination with row pivoting. The solutions for a, P and V,, as well as the solutions 
(12) for the other side-layer variables, are each given by the sum of two integrals with 
respect to 8*, where the integrands consist of F or G times kernels given by semi-infinite 
Fourier-inversion integrals with respect to A. The same 32 point Gauss-Legendre, 
Gauss-Hermite and Gauss-Chebyshev quadratures are used to evaluate the integrals 
with respect to h or 8*. The only fundamental difference between the integrals in the 
expression for the side-layer variables in terms of F and G, and the integrals in the 
two, coupled integral equations, is that each of the former semi-infinite integrals with 
respect to h includes either sin ( h Z )  or cos (hZ) ,  which arise from the Fourier inversion 
for Z =I= 0. 

4. Side-layer velocity profiles 
Typical profiles of V,  and V, are presented in figure 3. The values 8 = 0.47  and 

1.00  rad correspond to Gauss-Chebyshev abscissas for 8, = 1.1071 rad = arctan (2). 
Each profile of V,  involves an overshoot region where V,  > 1. The excess volume flux 
in the overshoot cancels the deficiency in regions where V,  < 1,  and the side-layer 
displacement thickness is zero everywhere. 

The unexpected result is the very small magnitude of V, (and of P and J,.). There 
does not appear to be any indication in the boundary-value problem (1 1 ,  14a-q  15a ,  
16, 17, 18) that V, is small. However, V, still plays an important physical role, since 
it is necessary for the overshoot in V,. If we replace the right-hand side of (1  1 b )  by 
zero, then the solution of the problem (1 1 b,  c ,  14b, c ,  15a, 17 b, c) is V ,  = P = 0. Then 
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0.5 

0 

-0.5 

- 1 .o 

FIGURE 4. Sketch of principal vortices in r = constant surfaces for 
the secondary flow in the side layers. 

the right-hand side of (1  1 a )  is zero, and the problem (1  1 a ,  14a, d ,  16, 17a) is precisely 
the side-layer problem solved by Hunt & Stewartson (1965) for fully developed flow 
in a constant-area rectangular duct with the same wall conductivities and with a 
uniform magnetic field. Their profiles of the axial velocity are monotonic and involve 
no overshoots. Therefore, their side-layer displacement thickness, h’ and the O(M-4) 
core perturbation variables are not zero. Indeed, the present derivation of the 
boundary condition (18) and the proof of zero side-layer displacement thickness 
depend on the right-hand side of ( l l b ) .  

Without the secondary flow associated with V,, the side layer cannot match the 
core V,, satisfy the no-slip condition (4a) at the side and have zero displacement 
thickness. The weak secondary flow provides the extra degree of freedom needed by 
V,  to satisfy all three of these criteria. In figure 3 the dashed lines for V, and the 
dotaashed lines for V, for the same 8 and Oo indicate that the regions of positive 
and negative V, for 8 > 0 correspond approximately with the regions of positive and 
negative 8 V,/82 respectively. 

The core flow (8) is purely radial, but the side-layer flow involves a weak secondary 
flow in r = constant surfaces superimposed on the primary flow. The primary flow 
in the side layer consists of V,. and that part of V,  which is associated with the first 
right-hand term in (12b) and which is due physically to the fact that the actual side 
layers are spreading away from the sides as r increases. The secondary flow consists 
of V, and the part of V,  associated with the last term in (126). There are four principal 
vortices in the secondary flow, as sketched in figure 4. Mathematically there is an 
infinite succession of pairs of vortices as we move away from the side, but their 
amplitudes decrease exponentially with 2 and are too small to be considered 
physically real or significant beyond the two pairs nearest the side. 

Tabeling & Chabrerie (1981) found similar side-layer secondary flows in fully 
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developed flows in annular rectangular ducts with uniform magnetic fields. Their 
secondary flows are driven by an inertial force associated with the duct’s curvature, 
while the present secondary flows are due to the gradient of the non-uniform magnetic 
field. Nevertheless, they also find an infinite succession of exponentially weakening 
vortices associated with an overshoot in the axial side-layer velocity profile. 

We cannot compare side-layer velocity profiles for the same duct in the presence 
of uniform and non-uniform magnetic fields, since these profiles represent similarity 
solutions based on different scalings in these two cases. For example, in real variables, 
the side-layer transverse dimensions increase as r and ri for polar non-uniform and 
uniform magnetic fields respectively, so that the same values of Z in the two cases 
do not correspond to each other. 

For a semi-infinite duct, r1 < r < 00, in a polar magnetic field, the present solution 
holds for a near region for r = O(1).  The assumptions N $ M $ 1 involved the 
characteristic quantities at r = 1 ,  but the local N and M decrease as r+ and r-l 
respectively, so that our assumptions fail far downstream. We continue to use half 
the distance between the sides for L because this is the dominant dimension far 
downstream. As we move downstream, the side layers spread across the duct and 
merge to become a viscous or viscous-inertial core, which ultimately evolves into a 
parabolic Poiseuille profile with decreasing magnitude or into a comparable velocity 
profile. The far downstream core could be studied by compressing the radial scale 
with R = Sr, where 6 depends on the relationship of the local N and M ,  and the far 
downstream core a t  R = 0 would match the present solution as r --f co. For finite-length 
ducts, rl < r < r2, the present solution requires that 

Nri2  $ Mril  $ Mb;l 9 1, 

where N and M are the constant parameters defined in $2, while the final condition 
ensures that the side layers are still thin a t  the exit. 

5. Discussion 
The physical reasons for the differences between the present flows and other 

three-dimensional MHD flows or fully developed flows are revealed by the consider- 
ation of certain characteristic surfaces for MHD flows. For a general three-dimensional 
magnetic field let s by the distance measured along a magnetic field line and B(s) be 
the local magnetic field strength a t  each point along this line. If each field line has 
two intersections with the electrically insulating or slightly conducting (thin-metal) 
walls confining the liquid metal, say a t  s1 and s2, then each magnetic field line has 
a value for a scalar quantity given by 

K = jsy B-I ds. 

If K has the same value for every magnetic field line, then there are no distinct 
characteristic surfaces, and the flow is ‘free’. If K varies, then a set of magnetic field 
lines with the same value of K define a characteristic surface, and the flow is either 
‘guided’ or ‘blocked’. These terms are borrowed from geostrophic rotating flows, 
which are analogous to MHD flows with strong magnetic fields. However, the 
situation with MHD is somewhat more complex because both electric current and 
velocity are involved. 

In a core region, the pressure must be constant on a characteristic surface, while 
the electric current must flow along it and must be parallel to the wall at the wall-field 
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intersection. The velocity perpendicular to a characteristic surface and the variation 
of the electric potential function along this surface are proportional to the electric 
current tangential to the surface. If there is an 0(1) current flowing along a surface, 
then there can be a proportional 0(1) velocity perpendicular to the surface and an 
0(1) voltage variation along the surface (Holroyd 1980a). However, if an 0 ( 1 )  
current cannot flow along a characteristic surface, then there can be no 0(1) velocity 
perpendicular to the surface, and the flow must follow the characteristic surfaces 
(Holroyd & Walker 1978). These aspects of the characteristic surfaces lead to four 
different flow situations. 

1.  Free flows with the same K for every magnetic jield line. For example, a uniform 
magnetic field perpendicular to a pair of parallel insulating or thin-metal walls gives 
a free flow, no matter what the geometry or electrical conductivity of the sides parallel 
to the field. In  this case, the core flow is a first-order two-dimensional potential flow 
in planes perpendicular to the field ; the sidewall boundary layers involve a monotonic 
tangential velocity profile for perfectly conducting sides; there is a second-order 
O(M-4) potential core flow which compensates for the volume flux deficiency in the 
sides layers. Specifically, there is a jump in the O(M-i)  q5 across the side layers which 
is proportional to the local volume flux deficiency, but the O(M-4) core $, which 
satisfies a two-dimensional Laplace equation, can accommodate the variable 
boundary condition a t  the sides which results from the jump across the side layers. 
Fully developed flow is a special case of the free flows with infinite, parallel sides 
and with no axial variations (Walker et al. 1971). 

2. Guided flows with axial characteristic surfaces. If the Characteristic surfaces 
extend far upstream and downstream, then the fluid can flow along the duct by 
following the characteristic surfaces and with no O( 1 )  electric currents. The long 
surfaces also allow very slow migration of the flow across surfaces over long distances. 
This is the case for variable-area circular ducts in uniform or non-uniform magnetic 
fields and for circular pipes in non-uniform fields (Holroyd & Walker 1978). 

3. Blockedflows with transverse characteristic surfaces. If the characteristic surfaces 
are essentially perpendicular to the flow direction and intersect insulating or 
thin-metal sides, then the sides block any O( 1 )  electric current and there can be no 
0 ( 1 )  velocity perpendicular to the surfaces, i.e. no 0(1) core velocity in the flow 
direction. I n  this case, the core is blocked, and the fluid here is essentially stagnant. 
The entire volume flux is carried by a large, O(Mi), axial velocity in the side layers. 
This is the case for insulating or thin-metal rectangular ducts with variable areas and 
uniform or non-uniform magnetic fields or with constant areas and variable fields 
(Walker et al. 1972). 

4. Guided flows with transverse characteristic surfaces. If the sides in case 3 are 
replaced by perfect conductors, then these sides will accept any 0(1) electric current, 
so that. there can now be an O(1)  core velocity perpendicular to the characteristic 
surfaces, and this core velocity can carry the volume flux down the duct. Unlike the 
free flow in case 1 with its relatively flexiblc potential core flow, this guided core flow 
is very restricted : the core axial velocity, transverse current and electric potential 
function are all determined, e.g. (8, 9). I n  particular, the jump in electric potential 
across the side layer is determined without solving the side-layer problem, and the 
side layer must accommodate this jump, while, for free flows, the jump in potential 
across the side layer is a result of the side-layer solution. I n  the present problem and 
others with parallel, perfectly conducting sides, the jump in potential is zero, so that 
the side layers must have zero displacement thickness. On the other hand, with 
diverging or converging sides, there is a jump in the 0 ( 1 )  electric potential across the 
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side layers, which means that an O(1) volume flux is carried by an O(Mi)  velocity 
in these layers. Dependening on the divergences and the magnetic-field variations, 
these side jets may flow upstream or downstream (Walker et al. 1971). This case 4 
is one case which does not occur in rotating flows. If a geostrophic surface intersects 
a solid wall parallel to the axis of rotation, then the flow is blocked. Here we can still 
have flow with 'blocked ' surfaces, if the sides will accommodate the required electric 
current along the surfaces. 

The transition between guided or blocked flows and free flows occurs when the 
variation of K is O(M-').  If the variations of K are much less than M-l,  then the 
flows are essentially free; if the variations of K are much greater than M-l,  then the 
flows are essentially guided or blocked. 

The present problem falls into case 4, but there are still physically significant 
subcategories within this case. Variations of K and the associated characteristic 
surfaces result from variable areas and/or variable magnetic fields. For the side layers, 
the distinction between free and guided or blocked flows is reflected in the coupling 
between the boundary-value problems governing # and the velocity along the 
magnetic field lines uB,  i.e. uo here. For free flows, there is no coupling. The proof of 
zero displacement thickness given in $3  depends on this coupling, as represented by 
the right-hand side of (1 1 b) .  For free flows with no coupling, this proof does not apply, 
and, indeed, the side layers have non-zero displacement thicknesses. 

A variable K and the associated characteristic surfaces can be achieved with a 
uniform magnetic field by diverging or converging the top and bottom (Walker et al. 
1971). In this case, the terms on the right-hand sides of ( l l a ,  b )  are replaced by 
zeros, but the boundary-value problems are coupled through the boundary conditions 
a t  the top and bottom. The proof of zero displacement thickness applies to  this case 
too, even though the coupling is through the boundary conditions instead of the 
governing equations. 

Variable-K flows with characteristic surfaces can be grouped into three categories : 
(a )  variable area with a uniform transverse magnetic field; ( b )  non-uniform magnetic 
field with variations of magnetic field strength B between field lines, but not along 
field lines, i.e. dB/ds = 0; and (c) non-uniform magnetic field with variations of B 
between and along field lines. For case ( b )  the field must be polar. Therefore the 
present analysis represents an extension from a uniform magnetic field (case a)  to 
a non-uniform magnetic field, but with the effects of the variations of field strength 
along field lines suppressed by the restriction to  a polar field (case b ) .  

The present restriction to  radial top and bottom was not necessary for the analysis. 
The present analysis and computer program apply equally well to a polar field with 
insulating top and bottom at 8 = +e , ( r ) ,  including a constant-area duct with 
8,(r) = arcsin (air), where a is half the constant distance between the parallel top and 
bottom. Non-radial top and bottom would bring another parameter related to dO,/dr 
into the local side-layer solution. However, the radial top and bottom were 
specifically chosen to emphasize the effects of a variable magnetic field in a guided 
flow. We are interested in the effects of the coupling reflected by the right-hand sides 
of ( 1  1 a ,  b ) ,  which are present because of the variation of field strength between field 
lines. 

With non-radial top and bottom, vo would have been driven by both these 
variable-field effects and the effects of the coupling through the boundary conditions 
a t  the top and bottom, e.g. vo = +v,dO,/dr, a t  8 = +O0. For non-radial top and 
bottom, the effects of the two different couplings through the equations and the 
boundary conditions could not be separated; for radial top and bottom, only the 
coupling through the equations is present, so that its effects are revealed. 
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We have found two effects: one old and one new. First, vr has an overshoot, so 
that the displacement thickness of each side layer is everywhere zero. However, this 
is also true for variable-area ducts in uniform transverse magnetic fields. Secondly, 
even though the field lines are perpendicular to the top and bottom, there is still a 
velocity along the field lines, namely vo, which reveals a secondary flow in the 
characteristic surfaces inside the side layers. There is no corresponding result for 
variable-area ducts in uniform fields, because, when the top and bottom are 
perpendicular to the field, the flow is free, and vB = 0. 

The extension to the case ( e )  with an unrestricted non-uniform magnetic field is 
needed to complete our understanding of MHD flows. However, i t  appears to be 
impracticable to extend the present method. With field variations along magnetic 
lines, the coupled ordinary differential equations obtained from the Fourier transforms 
of (1  1) would involve variable coefficients. Their analytical solution through variation 
of parameters or Green functions is theoretically straightforward, but practically 
impossible, because of the amount of algebra that would be involved. An approach 
with more numerics and less analysis has a greater promise of success with reasonable 
effort. 
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